Advertisements
Advertisements
प्रश्न
Prove that:
sin (28° + A) = cos (62° – A)
योग
उत्तर
sin (28° + A) = sin [90° – 62° – A] = cos (62° – A)
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 26° 32’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A