Advertisements
Advertisements
प्रश्न
What is the maximum value of \[\frac{1}{\sec \theta}\]
उत्तर
The maximum value of `1/cosθ` is 1 because the maximum value of sinθ is 1 that is
`1/(cosec θ)=sin θ`
`1/(cosec θ)=1`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate `(sin 18^@)/(cos 72^@)`
Evaluate cosec 31° − sec 59°
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find sine of 34° 42'
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
The value of
Sin 2A = 2 sin A is true when A =
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°