हिंदी

∠Acd is an Exterior Angle of δ Abc. If ∠B = 40o, ∠A = 70o Find ∠Acd. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.

उत्तर

∠ ACD = ∠ B + ∠ A .............. (theorem of remote interior angle)
= 40 + 70
= 110˚

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Balbharati Model Question Paper Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`


Evaluate:

`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`


Evaluate:

tan(55° - A) - cot(35° + A)


Use tables to find the acute angle θ, if the value of sin θ is 0.6525


Prove that:

sin (28° + A) = cos (62° – A)


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


What is the maximum value of \[\frac{1}{\sec \theta}\] 


Write the value of tan 10° tan 15° tan 75° tan 80°?


If 8 tan x = 15, then sin x − cos x is equal to 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


The value of tan 72° tan 18° is


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×