Advertisements
Advertisements
प्रश्न
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
विकल्प
0
1
2
3
उत्तर
0
Explanation;
Hint:
cosec(70° + θ) – sec(20° – θ) + tan(65° + θ) – cot(25° – θ)
= sec[90° – (70° + θ)] – sec(20° – θ) + tan(65° + θ) – tan[90° – (25° – θ)]
= sec(20° – θ) – sec(20° – θ) + tan(65° + θ) – tan(65° + θ)
= 0
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate `(sin 18^@)/(cos 72^@)`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If 3 cos θ = 5 sin θ, then the value of
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If tan θ = cot 37°, then the value of θ is