Advertisements
Advertisements
प्रश्न
Find the value of x, if sin 3x = 2 sin 30° cos 30°
उत्तर
sin 3x = 2 sin 30° cos 30°
sin 3x = `2(1/2)(sqrt3/2)`
sin 3x = `sqrt3/2 = sin60^circ`
3x = 60°
Hence, x = 20°
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
sin42° sin48° - cos42° cos48°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 2° 4’
If tanθ = 2, find the values of other trigonometric ratios.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`