Advertisements
Advertisements
प्रश्न
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
उत्तर
cos (2x – 6) = cos2 30° – cos2 60°
cos (2x – 6) = cos2 (90° – 60°) – cos2 60°
cos (2x – 6) = sin2 60° – cos2 60°
cos (2x – 6) = 1 – 2 cos2 60°
= `1 - 2(1/2)^2`
= `1 - 1/2`
= `1/2`
cos (2x – 6) = `1/2`
cos (2x – 6) = cos 60°
(2x – 6) = 60°
2x = 66°
Hence, x = 33°
APPEARS IN
संबंधित प्रश्न
Solve.
`sec75/(cosec15)`
Evaluate.
sin235° + sin255°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find cosine of 9° 23’ + 15° 54’
The value of cos2 17° − sin2 73° is
The value of cos 1° cos 2° cos 3° ..... cos 180° is
Sin 2A = 2 sin A is true when A =
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.