Advertisements
Advertisements
प्रश्न
The value of cos2 17° − sin2 73° is
विकल्प
1
\[\frac{1}{3}\]
0
-1
उत्तर
We have:
`cos^2 17°-sin^2 73°`
= `cos^2(90°-73°)-sin^2 73°`
=` sin^2 73°-sin^2 73°`
= 0
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate:
cosec (65° + A) – sec (25° – A)
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
What is the maximum value of \[\frac{1}{\sec \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If 3 cos θ = 5 sin θ, then the value of
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
If sin 3A = cos 6A, then ∠A = ?