हिंदी

The Value of Cos2 17° − Sin2 73° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos2 17° − sin2 73° is 

विकल्प

  •  1

  • \[\frac{1}{3}\]

  • 0

  • -1

MCQ

उत्तर

We have: 

`cos^2 17°-sin^2 73°`

= `cos^2(90°-73°)-sin^2 73°` 

=` sin^2 73°-sin^2 73°` 

= 0

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 11 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Evaluate:

cosec (65° + A) – sec (25° – A)


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


What is the maximum value of \[\frac{1}{\sec \theta}\]


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If 8 tan x = 15, then sin x − cos x is equal to 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


If sin 3A = cos 6A, then ∠A = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×