Advertisements
Advertisements
प्रश्न
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
उत्तर
`sinA/(secA - 1) + sinA/(secA + 1) = 2`
`=> (sinAsecA + sinA + secAsinA - sinA)/((secA - 1)(secA + 1)) = 2`
`=> (2sinAsecA)/(sec^2A - 1) = 2`
`=> (sinAsecA)/tan^2A = 1`
`=> cosA/sinA = 1`
`=>` cot A = 1
We know cot 45° = 1
Hence, A = 45°
APPEARS IN
संबंधित प्रश्न
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Use tables to find sine of 62° 57'
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
`(sin 75^circ)/(cos 15^circ)` = ?
If sin 3A = cos 6A, then ∠A = ?
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
The value of the expression (cos2 23° – sin2 67°) is positive.