हिंदी

Sin75∘cos15∘ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

`(sin 75^circ)/(cos 15^circ)` = ?

योग

उत्तर

`(sin 75^circ)/(cos 15^circ)` = `(sin(90^circ - 15^circ))/(cos 15^circ)`

= `(cos 15^circ)/(cos 15^circ)`    .....[∵ sin(90° – θ) = cos θ]

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (B)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If tan A = cot B, prove that A + B = 90


Evaluate cosec 31° − sec 59°


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Use tables to find the acute angle θ, if the value of sin θ is 0.3827


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


Prove that:

`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×