Advertisements
Advertisements
प्रश्न
`(sin 75^circ)/(cos 15^circ)` = ?
उत्तर
`(sin 75^circ)/(cos 15^circ)` = `(sin(90^circ - 15^circ))/(cos 15^circ)`
= `(cos 15^circ)/(cos 15^circ)` .....[∵ sin(90° – θ) = cos θ]
= 1
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
Evaluate cosec 31° − sec 59°
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.