Advertisements
Advertisements
प्रश्न
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.
विकल्प
cos 30°
tan 30°
sin 30°
cot 30°
उत्तर
If x tan 60° cos 60°= sin 60° cot 60°, then x = tan 30°.
Explanation:
Given, x tan 60° cos 60°= sin 60° cot 60°
x tan 60° cos 60°= sin 60° × `1/tan 60^circ`
Putting values
`x xx sqrt(3) xx 1/2 = sqrt(3)/2 xx 1/sqrt(3)`
`x xx sqrt(3)/2 = 1/2`
x = `1/2 xx 2/sqrt(3)`
x = `1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
cosec (65° + A) – sec (25° – A)
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 10° 20' + 20° 45'
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If tanθ = 2, find the values of other trigonometric ratios.
Write the maximum and minimum values of cos θ.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
The value of cos2 17° − sin2 73° is
The value of tan 10° tan 15° tan 75° tan 80° is
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?