Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
विकल्प
1
2
3
4
उत्तर
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = 2.
Explanation:
Now, tan θ + cot θ = `sinθ/cosθ + cosθ/sinθ`
= `(sin^2θ + cos^2θ)/(cosθ sinθ)`
Putting sin2θ + cos2θ = 1
= `1/(cosθ sinθ)` .....(1)
Finding cos θ sin θ
sin θ + cos θ = `sqrt(2)`
Squaring both sides
(sin θ + cos θ)2 = `(sqrt(3))^2`
(sin θ + cos θ)2 = 2
sin2θ + cos2θ + 2 sin θ cos θ = 2
Putting sin2θ + cos2θ = 1
1 + 2 sin θ cos θ = 2
2 sin θ cos θ = 2 – 1
2 sin θ cos θ = 1
sin θ cos θ = `1/2`
cos θ sin θ = `1/2`
Now, tan θ + cot θ = `1/(cos θ sin θ)`
Putting values
= `1/(1/2)`
= 2
APPEARS IN
संबंधित प्रश्न
If sin A = `3/4`, calculate cos A and tan A.
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
If cos (40° + A) = sin 30°, then value of A is ______.
If sec θ = `1/2`, what will be the value of cos θ?
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.