Advertisements
Advertisements
Question
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
Options
1
2
3
4
Solution
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = 2.
Explanation:
Now, tan θ + cot θ = `sinθ/cosθ + cosθ/sinθ`
= `(sin^2θ + cos^2θ)/(cosθ sinθ)`
Putting sin2θ + cos2θ = 1
= `1/(cosθ sinθ)` .....(1)
Finding cos θ sin θ
sin θ + cos θ = `sqrt(2)`
Squaring both sides
(sin θ + cos θ)2 = `(sqrt(3))^2`
(sin θ + cos θ)2 = 2
sin2θ + cos2θ + 2 sin θ cos θ = 2
Putting sin2θ + cos2θ = 1
1 + 2 sin θ cos θ = 2
2 sin θ cos θ = 2 – 1
2 sin θ cos θ = 1
sin θ cos θ = `1/2`
cos θ sin θ = `1/2`
Now, tan θ + cot θ = `1/(cos θ sin θ)`
Putting values
= `1/(1/2)`
= 2
APPEARS IN
RELATED QUESTIONS
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
Find the value of x in the following :
`2sin 3x = sqrt3`
If `sqrt2 sin (60° – α) = 1` then α is ______.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.