Advertisements
Advertisements
Question
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Solution
We know `sec A = "โ๐ฆ๐๐๐ก๐๐๐ข๐ ๐"/"๐๐๐๐๐๐๐๐ก ๐ ๐๐๐"`
Consider right-angled triangle ABC
Let x be the adjacent side
By applying Pythagoras we get
๐ด๐ถ2 = ๐ด๐ต2 + ๐ต๐ถ2
(17)2 = ๐ฅ2 + 64
๐ฅ2 = 289 − 64
๐ฅ2 = 225 ⇒ ๐ฅ = 15
`sin A = (AB)/(BC) = 15/17`
`cos A = (BC)/(AC) = 8/17`
`tan A = (AB)/(BC) = 15/8`
`L.H.S = (3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - 4 xx (15/17)^2)/(4xx (8/17)^2 - 3) = (3 -4 xx 225/289)/(4 xx 64/289 - 3) = (867 - 900)/(256 - 867) = (-33)/(-611) = 33/611`
`R.H.S = (3 - tan^2A)/(1 - 3tan^2 A) = (3 - (15/8)^2)/(1- 3 xx (15/8)^2) = (3 - (225)/64)/(1- 3 xx (225)/64) = ((-33)/64)/((-611)/64) = (-33)/(-611) = 33/611`
∴ LHS = RHS
APPEARS IN
RELATED QUESTIONS
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
cos 60° cos 45° - sin 60° โ sin 45°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Find the value of sin 45° + cos 45° + tan 45°.
Find will be the value of cos 90° + sin 90°.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.