Advertisements
Advertisements
Question
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Solution
We know `sin theta = "𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒"/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"`
Let x be the adjacent side
By applying Pythagoras theorem
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
b2 = a2 + x2
x2 = b2 − a2
`x = sqrt(b^2 - a^2)`
`sec theta = (AB)/(BC) = b/(sqrt(b^2 - a^2))`
`tan theta = (AB)/(BC) = a/(sqrt(b^2 - a^2))`
`sec theta + tan theta = b/(b^2 - a^2) + a/(sqrt(b^2 - a^2))`
`= (b + a)/(sqrt(b^2 - a^2)) = (b+ a)/sqrt((b + a)(b - a)) = (b + a)/sqrt(b + a) - 1/(sqrt(b - a)) = sqrt((b + a)/(b - a))`
APPEARS IN
RELATED QUESTIONS
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
If cos (40° + A) = sin 30°, then value of A is ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
Find will be the value of cos 90° + sin 90°.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ