Advertisements
Advertisements
Question
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Solution
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°) ....(i)
By trigonometric ratios we have
`cos 0^@ = 1, sin 45^@ = 1/sqrt2, sin 30^@ = 1/2, sin 90^@ = 1, cos 45^@ = 1/sqrt2 cos 6062 = 1/2`
By substituting above values in (i), we get
`(1 + 1/sqrt2 + 1/2)(1 - 1/sqrt2 + 1/2)`
`[3/2 + 1/sqrt2 + 1/sqrt2] [3/2 - 1/sqrt2] => [3/2]^2 - [1/sqrt2]= 9/4 - 1/2 = 7/4`
APPEARS IN
RELATED QUESTIONS
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
sin (45° + θ) – cos (45° – θ) is equal to ______.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
Find will be the value of cos 90° + sin 90°.
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.