Advertisements
Advertisements
Question
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Solution
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)` ....(i)
By trigonometric ratios we have
`tan 60^@ = sqrt3 cos 45^@ = 1/sqrt2 sec 30^@ = 2/sqrt3`
`cos 90^@ = 0 cosec 30^@ = 2 sec 60^@ = 2 cot 30^@ = sqrt3`
By substituting above values in (i), we get
`((sqrt3)^2 + 4.(1/sqrt3)^2 + 2 + [2/sqrt3]^2 + 5(0)^2)/(2 + 2sqrt2 (+ sqrt3)^2)`
`= (3 + 4. 1/2 + 3 4/3)/(4 - 3) = (3 + 2 + 4)/1 = 9`
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
sin (45° + θ) – cos (45° – θ) is equal to ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.