Advertisements
Advertisements
प्रश्न
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
उत्तर
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)` ....(i)
By trigonometric ratios we have
`tan 60^@ = sqrt3 cos 45^@ = 1/sqrt2 sec 30^@ = 2/sqrt3`
`cos 90^@ = 0 cosec 30^@ = 2 sec 60^@ = 2 cot 30^@ = sqrt3`
By substituting above values in (i), we get
`((sqrt3)^2 + 4.(1/sqrt3)^2 + 2 + [2/sqrt3]^2 + 5(0)^2)/(2 + 2sqrt2 (+ sqrt3)^2)`
`= (3 + 4. 1/2 + 3 4/3)/(4 - 3) = (3 + 2 + 4)/1 = 9`
APPEARS IN
संबंधित प्रश्न
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ