Advertisements
Advertisements
प्रश्न
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
उत्तर
3 tan theta = 4 find `(4cos theta - sin theta)/(2cos theta + sin theta)` ....(i)
`tan theta = 4/3`
Dividing equation (i) with cos θ we get
`= ((4cos theta - sin theta)/cos theta)/((2 cos theta + sin theta)/cos theta) = (4 - tan theta)/(2 + tan theta) [∵ sin theta/cos theta = tan theta]`
`= (4 - tan theta)/(2 + tan theta) [∵ sin theta/cos theta = tan theta]`
`= (4 - 4/1)/(2 + 4/5)`
`= (12 - 4)/(6 + 4)`
`= 8/10`
`= 4/5`
APPEARS IN
संबंधित प्रश्न
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.