Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
рдЙрддреНрддрд░
`cot theta = 1/sqrt3 (1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
`cot theta = "ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ" = 1/sqrt3`
Let x be the hypotenuse
By applying Pythagoras
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
`x^2 = (sqrt3)^2 + 1`
`x^2 = 3 + 1`
ЁЭСе2 = 3 + 1 ⇒ ЁЭСе = 2
`cos theta = (BC)/(AC) = 1/2`
`sin theta = (AB)/(AC) = sqrt3/2`
`(1 - cos^2 theta)/(2 - sin^2 theta) => (1 - (1/2)^2)/(2 - (sqrt3)/2)^2`
`=> (1 - 1/4)/(2 - 3/4) => (3/4)/(5/4`
`= 3/5`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
Find will be the value of cos 90° + sin 90°.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.