Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
рдЙрддреНрддрд░
`tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
`tan theta = "ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ"`
Let ‘x’ be the hypotenuse
By applying Pythagoras
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
`x^2 = 1^2 + (sqrt7)^2`
ЁЭСе2 = 1 + 7 = 8
`x = 2sqrt2`
`cosec theta = (AC)/(AB) = 2sqrt2`
`sec theta = (AC)/(BC) = (2sqrt2)/sqrt7`
Substitute, cosec θ, sec θ in equation
`=> ((2sqrt2)^2 - (2 sqrt(2/7))^2)/((2sqrt2)^2 + ((2sqrt2)/sqrt7)^2)`
`(8 - 4 xx 2/7)/(8 + 4 xx 2/7)`
`=> (8 - 8/7)/(8 + 8/7)`
`=> ((56 - 8)/7)/((56 + 8)/7)`
`=48/64`
`= 3/4`
L.H.S = R.H.S
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
In Given Figure, find tan P – cot R.
Given sec θ = `13/12`, calculate all other trigonometric ratios.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
If `tan theta = 24/7`, find that sin ЁЭЬГ + cos ЁЭЬГ
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If sin A = `1/2`, then the value of cot A is ______.