Advertisements
Advertisements
प्रश्न
In Given Figure, find tan P – cot R.
उत्तर
Applying Pythagoras theorem for ΔPQR, we obtain
PR2 = PQ2 + QR2
(13 cm)2 = (12 cm)2 + QR2
169 cm2 = 144 cm2 + QR2
25 cm2 = QR2
QR = 5 cm
tan P = `("Side opposite to ∠P")/("Side adjacent to ∠P") = ("QR")/("PQ")`
= `5/12`
cot R = `("Side opposite to ∠R")/("Side adjacent to ∠R") = ("QR")/("PQ")`
= `5/12`
tan P - cot R = `5/12 - 5/12 = 0`
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Find the value of x in the following :
`2sin 3x = sqrt3`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If `sqrt2 sin (60° – α) = 1` then α is ______.
`(sin theta)/(1 + cos theta)` is ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.