Advertisements
Advertisements
प्रश्न
In Given Figure, find tan P – cot R.
उत्तर
Applying Pythagoras theorem for ΔPQR, we obtain
PR2 = PQ2 + QR2
(13 cm)2 = (12 cm)2 + QR2
169 cm2 = 144 cm2 + QR2
25 cm2 = QR2
QR = 5 cm
tan P = `("Side opposite to ∠P")/("Side adjacent to ∠P") = ("QR")/("PQ")`
= `5/12`
cot R = `("Side opposite to ∠R")/("Side adjacent to ∠R") = ("QR")/("PQ")`
= `5/12`
tan P - cot R = `5/12 - 5/12 = 0`
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
`2 sin x/2 = 1`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
sin (45° + θ) – cos (45° – θ) is equal to ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
In the given figure, if sin θ = `7/13`, which angle will be θ?
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.