हिंदी

If sin A = 34, calculate cos A and tan A. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin A = `3/4`, calculate cos A and tan A.

योग

उत्तर

Let ΔABC be a right-angled triangle, right-angled at point B.

Given that,

sin A = `3/4`

`("BC")/("AC") = 3/4`

Let BC be 3k.

Therefore, AC will be 4k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

AC2 = AB2 + BC2

(4k)2 = AB2 + (3k)2

16k2 − 9k2 = AB2

7k2 = AB2

AB = `sqrt7k`

cos A = `("Side adjacent to ∠A")/"Hypotenuse"`

∴ cos A = `("AB")/("AC")`

= `sqrt(7k)/(4k)`

= `sqrt7/4`

tan A = `("Side adjacent to ∠A")/("Side adjacent to ∠A")`

= `("BC")/("AB")`

= `(3k)/(sqrt7k)`

= `3/sqrt7`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.1 | Q 3 | पृष्ठ १८१

संबंधित प्रश्न

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.


In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.


State whether the following are true or false. Justify your answer.

cos A is the abbreviation used for the cosecant of angle A.


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan alpha = 5/12`


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`cot theta = 12/5`


If 3 cot θ = 2, find the value of  `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.


If `cot theta = 1/sqrt3` show that  `(1 - cos^2 theta)/(2 - sin^2  theta) = 3/5`


If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.


if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`


if `sin theta = 3/4`  prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`


Evaluate the following

`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`


Evaluate the Following

`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`


Evaluate the Following

`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`


If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.


If sin A = `1/2`, then the value of cot A is ______.


In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.


Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.

Proof: L.H.S. = sec θ + tan θ

= `1/square + square/square`

= `square/square`  ......`(∵ sec θ = 1/square, tan θ = square/square)`

= `((1 + sin θ) square)/(cos θ  square)`  ......[Multiplying `square` with the numerator and denominator]

= `(1^2 - square)/(cos θ  square)`

= `square/(cos θ  square)`

= `cos θ/(1 - sin θ)` = R.H.S.

∴ L.H.S. = R.H.S.

∴ sec θ + tan θ = `cos θ/(1 - sin θ)`


Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to  ______.


In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.


Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×