Advertisements
Advertisements
प्रश्न
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.
उत्तर
5 cosec2 45° – 3 sin2 90° + 5 cos 0°
= `5(sqrt(2))^2 - 3(1)^2 + 5(1)`
= 10 – 3 + 5
= 12.
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.
(3 sin2 30° – 4 cos2 60°) is equal to ______.