Advertisements
Advertisements
प्रश्न
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
उत्तर
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°) ....(i)
By trigonometric ratios we have
`cos 0^@ = 1, sin 45^@ = 1/sqrt2, sin 30^@ = 1/2, sin 90^@ = 1, cos 45^@ = 1/sqrt2 cos 6062 = 1/2`
By substituting above values in (i), we get
`(1 + 1/sqrt2 + 1/2)(1 - 1/sqrt2 + 1/2)`
`[3/2 + 1/sqrt2 + 1/sqrt2] [3/2 - 1/sqrt2] => [3/2]^2 - [1/sqrt2]= 9/4 - 1/2 = 7/4`
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
`2 sin x/2 = 1`
If sin A = `1/2`, then the value of cot A is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.