हिंदी

State whether the following are true or false. Justify your answer. cos A is the abbreviation used for the cosecant of angle A. - Mathematics

Advertisements
Advertisements

प्रश्न

State whether the following are true or false. Justify your answer.

cos A is the abbreviation used for the cosecant of angle A.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

Abbreviation used for cosecant of angle A is cosec A. And cos A is the abbreviation used for cosine of angle A.

Hence, the given statement is false.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.1 | Q 11.3 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.1 | Q 36.3 | पृष्ठ २६

संबंधित प्रश्न

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin A = 2/3`


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan theta = 8/15`


If sec θ = `13/5, "show that"  (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.


if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`


if `sin theta = 3/4`  prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`


Evaluate the following

sin2 30° + sin2 45° + sin2 60° + sin2 90°


Evaluate the following

tan2 30° + tan2 60° + tan45°


Evaluate the Following

cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°


Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`


Evaluate the Following

`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`


Find the value of x in the following :

`2 sin  x/2 = 1`


If cos (40° + A) = sin 30°, then value of A is ______.


If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.


5 tan² A – 5 sec² A + 1 is equal to ______.


If cos A = `4/5`, then the value of tan A is ______.


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.


If θ is an acute angle of a right angled triangle, then which of the following equation is not true?


If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.


Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×