Advertisements
Advertisements
प्रश्न
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?
विकल्प
sin θ cot θ = cos θ
cos θ tan θ = sin θ
cosec2 θ – cot2 θ = 1
tan2 θ – sec2 θ = 1
उत्तर
tan2 θ – sec2 θ = 1
Explanation:
tan2 θ – sec2 θ = 1 is not true
∵ sec2 θ = 1 + tan2 θ
or sec2 θ – tan2 θ = 1
APPEARS IN
संबंधित प्रश्न
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cos theta = 12/2`
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Find the value of x in the following :
`sqrt3 sin x = cos x`
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.