Advertisements
Advertisements
प्रश्न
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
विकल्प
sec2 A
- 1
cot2 A
tan2 A
उत्तर
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to tan2 A.
Explanation:
`(1 + tan^2 "A")/(1 + cot^2 "A") = (1 + (sin^2 "A")/(cos^2 "A"))/(1 + (cos^2 "A")/(sin^2 "A")`
= `((cos^2 "A" + sin^2 "A")/(cos^2 "A"))/((sin^2 "A" + cos^2 "A")/(sin^2 "A")) = (1/cos^2 "A")/(1/sin^2 "A")`
= `sin^2 "A"/cos^2 "A" = tan^2 "A"`
∴ `(1 + tan^2 "A")/(1 + cot^2 "A") = tan^2 "A"`
संबंधित प्रश्न
In Given Figure, find tan P – cot R.
If cot θ = `7/8`, evaluate cot2 θ.
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
`(sin theta)/(1 + cos theta)` is ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.