Advertisements
Advertisements
Question
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
Options
sec2 A
- 1
cot2 A
tan2 A
Solution
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to tan2 A.
Explanation:
`(1 + tan^2 "A")/(1 + cot^2 "A") = (1 + (sin^2 "A")/(cos^2 "A"))/(1 + (cos^2 "A")/(sin^2 "A")`
= `((cos^2 "A" + sin^2 "A")/(cos^2 "A"))/((sin^2 "A" + cos^2 "A")/(sin^2 "A")) = (1/cos^2 "A")/(1/sin^2 "A")`
= `sin^2 "A"/cos^2 "A" = tan^2 "A"`
∴ `(1 + tan^2 "A")/(1 + cot^2 "A") = tan^2 "A"`
RELATED QUESTIONS
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
Find the value of sin 45° + cos 45° + tan 45°.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.