Advertisements
Advertisements
Question
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.
Solution
2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
= `2(sqrt(2))^2 + 3(sqrt(2))^2 - 2. 1/sqrt(2). 1/sqrt(2)` ...[∵ θ = 45°]
= `2 xx 2 + 3 xx 2 - 2 xx 1/2`
= 4 + 6 – 1
= 9
APPEARS IN
RELATED QUESTIONS
If sin A = `3/4`, calculate cos A and tan A.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
Find the value of sin 45° + cos 45° + tan 45°.
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ