Advertisements
Advertisements
Question
If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.
Solution
sin θ – cos θ = 0
sin θ = cos θ
`sinθ/cosθ` = 1
`\implies` tan θ = tan 45°
∴ θ = 45°
Now sin4 θ + cos4 θ = sin4 45° + cos4 45°
= `(1/sqrt(2))^4 + (1/sqrt(2))^4`
= `1/4 + 1/4`
= `2/4`
sin4 θ + cos4 θ = `1/2`
APPEARS IN
RELATED QUESTIONS
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos theta = 7/25`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.