Advertisements
Advertisements
Question
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
Solution 1
Given: sec θ = `13/5`
We know that,
Sec θ = `"Hypotenuse"/"Adjacent Side"`
Sec θ = `13/5 = "AC"/"BC"`
Let AC = 13k and BC = 5k
In ΔABC, ∠B = 90°
By Pathagoras theorem,
AC2 = AB2 + BC2
(13k)2 = AB2 + (5k)2
AB2 = 169k2 - 25k2
AB2 = 144k2
AB = 12k
Sin θ = `"AB"/"AC" = "12k"/"13k" = 12/13`
Cos θ = `"BC"/"AC" = "5k"/"13k" = 5/13`
LHS = `(2sinθ - 3 cosθ)/(4sinθ - 9cosθ)`
LHS = `[2 × (12/13) - 3 × (5/13)]/[4 × (12/13) + 9 × (5/13)]`
LHS = `[24/13 - 15/13]/[48/13 + 45/13]`
LHS = `[9/13]/[3/13]`
LHS = `9/(cancel13) × cancel13/3`
LHS = `9/3`
LHS = 3
RHS = 3
LHS = RHS
`(2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`
Hence proved.
Solution 2
Given: sec θ = `13/5`
cos θ = `1/secθ = 5/13`
sin2θ = 1 - cos2θ
sin2θ = `1 - (5/13)^2`
sin2θ = `1 - 25/169`
sin2θ = `(169 − 25)/169`
sin2θ = `144/169`
sin θ = `12/13`
Now, put the values in the equation,
LHS = `(2sinθ - 3 cosθ)/(4sinθ - 9cosθ)`
LHS = `(2 × (12/13) - 3 × (5/13))/(4 × (12/13) - 9 × (5/13))`
LHS = `(24/13 - 15/13)/(48/13 - 45/13)`
LHS = `((24- 15)/cancel13)/((48 - 45)/cancel13)`
LHS = `9/3`
LHS = 3
RHS = 3
LHS = RHS
`(2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`
Hence proved.
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.