Advertisements
Advertisements
प्रश्न
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
उत्तर १
Given: sec θ = `13/5`
We know that,
Sec θ = `"Hypotenuse"/"Adjacent Side"`
Sec θ = `13/5 = "AC"/"BC"`
Let AC = 13k and BC = 5k
In ΔABC, ∠B = 90°
By Pathagoras theorem,
AC2 = AB2 + BC2
(13k)2 = AB2 + (5k)2
AB2 = 169k2 - 25k2
AB2 = 144k2
AB = 12k
Sin θ = `"AB"/"AC" = "12k"/"13k" = 12/13`
Cos θ = `"BC"/"AC" = "5k"/"13k" = 5/13`
LHS = `(2sinθ - 3 cosθ)/(4sinθ - 9cosθ)`
LHS = `[2 × (12/13) - 3 × (5/13)]/[4 × (12/13) + 9 × (5/13)]`
LHS = `[24/13 - 15/13]/[48/13 + 45/13]`
LHS = `[9/13]/[3/13]`
LHS = `9/(cancel13) × cancel13/3`
LHS = `9/3`
LHS = 3
RHS = 3
LHS = RHS
`(2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`
Hence proved.
उत्तर २
Given: sec θ = `13/5`
cos θ = `1/secθ = 5/13`
sin2θ = 1 - cos2θ
sin2θ = `1 - (5/13)^2`
sin2θ = `1 - 25/169`
sin2θ = `(169 − 25)/169`
sin2θ = `144/169`
sin θ = `12/13`
Now, put the values in the equation,
LHS = `(2sinθ - 3 cosθ)/(4sinθ - 9cosθ)`
LHS = `(2 × (12/13) - 3 × (5/13))/(4 × (12/13) - 9 × (5/13))`
LHS = `(24/13 - 15/13)/(48/13 - 45/13)`
LHS = `((24- 15)/cancel13)/((48 - 45)/cancel13)`
LHS = `9/3`
LHS = 3
RHS = 3
LHS = RHS
`(2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`
Hence proved.
APPEARS IN
संबंधित प्रश्न
In Given Figure, find tan P – cot R.
If cot θ = `7/8`, evaluate cot2 θ.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
If cos A = `4/5`, then the value of tan A is ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
(3 sin2 30° – 4 cos2 60°) is equal to ______.
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.