Advertisements
Advertisements
प्रश्न
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
उत्तर
Given: tan θ = `20/21`,
show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Since tan θ = perpendicular/base
So we construct right triangle ABC right angled at C
such that ∠ABC = θ and AC = Perpendicular = 20
BC = base = 21
By Pythagoras theorem, AB2 = AC2 + BC2
⇒ AB2 = (20)2 + (21)2
⇒ AB2 = 400 + 441
⇒ AB2 = 841
⇒ AB = `sqrt841`
⇒ AB = 29
As sin θ = perpendicular / hypotenuse cos θ = base / hypotenuse
So,
tan θ = `20/21` ⇒ sin θ `20/29 and cos θ = 21/29`
∴ `(1 - sin θ + cos θ)/(1 + sin θ + cos θ) = (1 - 20/29 + 21/29)/(1 + 20/29 + 21/29)`
= `(30/29)/(70/29)`
= `3/7` Hence proved
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
If cos A = `4/5`, then the value of tan A is ______.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?