Advertisements
Advertisements
Question
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Solution
Given: tan θ = `20/21`,
show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Since tan θ = perpendicular/base
So we construct right triangle ABC right angled at C
such that ∠ABC = θ and AC = Perpendicular = 20
BC = base = 21
By Pythagoras theorem, AB2 = AC2 + BC2
⇒ AB2 = (20)2 + (21)2
⇒ AB2 = 400 + 441
⇒ AB2 = 841
⇒ AB = `sqrt841`
⇒ AB = 29
As sin θ = perpendicular / hypotenuse cos θ = base / hypotenuse
So,
tan θ = `20/21` ⇒ sin θ `20/29 and cos θ = 21/29`
∴ `(1 - sin θ + cos θ)/(1 + sin θ + cos θ) = (1 - 20/29 + 21/29)/(1 + 20/29 + 21/29)`
= `(30/29)/(70/29)`
= `3/7` Hence proved
APPEARS IN
RELATED QUESTIONS
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.