Advertisements
Advertisements
Question
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Solution
`Cosec A = "hypotenuse"/"opposite side" = 2/1`
Let x be the adjacent side
By applying Pythagoras theorem
`AC^2 = AB^2 + BC^2`
4 = 1 + ЁЭСе2
`x^2 = 3 => x = sqrt3`
`sin A = 1/(cosec A) = 1/2`
`tan A = (AB)/(BC) = 1/sqrt3`
`cos A = (BC)/(AC) = sqrt3/2`
Substitute in equation we get
`1/tan A + sin A /(1+ cos A) = 1/(1/sqrt3) + (1/2)/(1 + sqrt3/2)`
`=> sqrt3 + (1/2)/((2 + sqrt3)/2) = sqrt3 + 1/(2 + sqrt3) = (2sqrt3 + 3 +1)/(2 + sqrt3) = (2sqrt3 + 4)/(2 + sqrt3) = (2(2 + sqrt3))/(2 + sqrt3) = 2`
APPEARS IN
RELATED QUESTIONS
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
Find the value of x in the following :
`2sin 3x = sqrt3`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If cos (40° + A) = sin 30°, then value of A is ______.
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.