Advertisements
Advertisements
Question
Find the value of x in the following :
`sqrt3 sin x = cos x`
Solution
We have
`sqrt3 sin x = cos x`
Now by cross multiplying we get,
`sqrt3 sin x = cos x``
`=> sin x/cos x = 1/sqrt3`.........(1)
Now we know that
`sin x/cos x = tan x` .......(2)
Therefore from equation (1) and (2)
We get
`tan x = 1/sqrt3` .......(3)
since
`tan 30^2 = 1/sqrt3` ....(4)
Therefore, by comparing equation (3) and (4) we get,
`x = 30^@`
Therefore
`x = 30^@`
APPEARS IN
RELATED QUESTIONS
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.