Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`sqrt3 sin x = cos x`
उत्तर
We have
`sqrt3 sin x = cos x`
Now by cross multiplying we get,
`sqrt3 sin x = cos x``
`=> sin x/cos x = 1/sqrt3`.........(1)
Now we know that
`sin x/cos x = tan x` .......(2)
Therefore from equation (1) and (2)
We get
`tan x = 1/sqrt3` .......(3)
since
`tan 30^2 = 1/sqrt3` ....(4)
Therefore, by comparing equation (3) and (4) we get,
`x = 30^@`
Therefore
`x = 30^@`
APPEARS IN
संबंधित प्रश्न
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
The value of the expression (sin 80° – cos 80°) is negative.
Find the value of sin 45° + cos 45° + tan 45°.
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.