Advertisements
Advertisements
प्रश्न
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
उत्तर १
Let us consider a right triangle ABC, right-angled at point B.
cot theta = `7/8`
If BC is 7k, then AB will be 8k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC, we obtain
AC2 = AB2 + BC2
= (8k)2 + (7k)2
= 64k2 + 49k2
= 113k2
AC = `sqrt113k`
`sin theta = (8k)/sqrt(113k) = 8/sqrt(113)`
`cos theta = (7k)/sqrt(113k) = 7/sqrt113`
`((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ)) = (1-sin^2θ)/(1-cos^2θ)`
= `(1-(8/sqrt113)^2)/(1-(7/sqrt(113))^2)`
= `(1-64/113) /(1-49/113)`
= `(49/113)/(64/113)`
= `49/64`
उत्तर २
`cot theta = 7/8`
`((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
= `(1 - sin^2 theta)/(1 - cos^2 theta)` ...[∵ (a + b) (a – b) = a2 − b2] a = 1, b = sin 𝜃
We know that sin 2𝜃 + cos2𝜃 = 1
1 − sin2𝜃 = cos2𝜃 = cos2𝜃
1 − cos2𝜃 = sin2 𝜃
= `(cos^2 theta)/(sin^2 theta)`
= `cot^2 theta`
= `(cot theta)^2`
= `[7/8]^2`
= `49/64`
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If sin A = `1/2`, then the value of cot A is ______.
Find will be the value of cos 90° + sin 90°.
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.