मराठी

If cot θ = 78, evaluate cot2 θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If cot θ = `7/8`, evaluate cot2 θ.

बेरीज

उत्तर

`Cot^2 theta = (7/8)^2`

= `49/64`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.1 | Q 7.2 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.1 | Q 7.2 | पृष्ठ २४

संबंधित प्रश्‍न

State whether the following are true or false. Justify your answer.

cot A is the product of cot and A.


Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`cos theta = 12/2`


If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.


If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`


Evaluate the following

cos2 30° + cos2 45° + cos2 60° + cos2 90°


Evaluate the following

tan2 30° + tan2 60° + tan45°


Evaluate the Following

(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)


In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC


If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.


3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.


If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.


The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.


Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.

Proof: L.H.S. = sec θ + tan θ

= `1/square + square/square`

= `square/square`  ......`(∵ sec θ = 1/square, tan θ = square/square)`

= `((1 + sin θ) square)/(cos θ  square)`  ......[Multiplying `square` with the numerator and denominator]

= `(1^2 - square)/(cos θ  square)`

= `square/(cos θ  square)`

= `cos θ/(1 - sin θ)` = R.H.S.

∴ L.H.S. = R.H.S.

∴ sec θ + tan θ = `cos θ/(1 - sin θ)`


Find the value of sin 45° + cos 45° + tan 45°.


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.


If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×