Advertisements
Advertisements
प्रश्न
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
उत्तर
Proof: L.H.S. = sec θ + tan θ
= `1/bb(cos θ) + bb(sin θ)/bb(cos θ)` ........`[∵ sec θ = 1/bb(cos θ), tan θ = bb(sin θ)/bb(cos θ)]`
= `bb(1 + sintheta)/bbcostheta` = `((1 + sin θ) bb(1 - sin θ))/(cos θ bb(1 - sin θ)` ......[Multiplying `bb(1 - sin θ)` with the numerator and denominator]
= `(1^2 - bb(sin^2 θ))/(cos θ bb(1 - sin θ)`
= `bb (cos^2 θ)/(cos θ bb(1 - sin θ)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
APPEARS IN
संबंधित प्रश्न
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cos theta = 12/2`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.