Advertisements
Advertisements
प्रश्न
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
उत्तर
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°` ....(i)
By trigonometric ratios we have
`sin 30^@ = 1/2` `cos 45^@ = 1/sqrt2` `tan 30^2 = 1/sqrt3` `sin 90^@ = 1 cos 90^@ = 0 cos 0^@ = 1`
By substituting above values in (i), we get
`[1/2]^2 . [1/sqrt2]^2 + 4[1/sqrt3]^2 + 1/2[1]^2 - 2[0]^2 + 1/24 [1]^2`
`1/4.1/2 + 4/ 1/3 + 1/2 - 0 + 1/24`
`1/8 + 4/3 + 1/2 + 1/24 = 48/24 = 2`
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
The value of sin² 30° – cos² 30° is ______.
`(sin theta)/(1 + cos theta)` is ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.