Advertisements
Advertisements
प्रश्न
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
उत्तर
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°` ....(i)
By trigonometric ratios we have
`sin 30^@ = 1/2` `cos 45^@ = 1/sqrt2` `tan 30^2 = 1/sqrt3` `sin 90^@ = 1 cos 90^@ = 0 cos 0^@ = 1`
By substituting above values in (i), we get
`[1/2]^2 . [1/sqrt2]^2 + 4[1/sqrt3]^2 + 1/2[1]^2 - 2[0]^2 + 1/24 [1]^2`
`1/4.1/2 + 4/ 1/3 + 1/2 - 0 + 1/24`
`1/8 + 4/3 + 1/2 + 1/24 = 48/24 = 2`
APPEARS IN
संबंधित प्रश्न
In Given Figure, find tan P – cot R.
If cot θ = `7/8`, evaluate cot2 θ.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
sin (45° + θ) – cos (45° – θ) is equal to ______.
If cos A = `4/5`, then the value of tan A is ______.
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.
If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.