Advertisements
Advertisements
प्रश्न
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
उत्तर
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45° ........(i)
By trigonometric ratios we have
`sin 60^@ = sqrt3/2 - cos 30^@(sqrt3/2) tan 60^@ = sqrt3 tan 45^@ = 1 cos 45^@ = 1/sqrt2`
By substituting above values in (i), we get
`4([sqrt3/2]^4) + [sqrt3/2]^4) - 3([3]^2 - [1]^2) + `5[1/sqrt2]^2`
`=> 4[9/16 + 9/16] - 3[3 - 1]+ 5[1/2]`
`=> 4. 18/16 - 6 + 5/2`
`=> 1/4 - 6 + 5/2`
`=> 1/4 - 6 + 5/2`
`= 9/2 + 5/2 - 6`
`= 14/2 - 6 = 7 - 6 = 1`
APPEARS IN
संबंधित प्रश्न
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
`(sin theta)/(1 + cos theta)` is ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If sin A = `1/2`, then the value of cot A is ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.