हिंदी

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine: sin A, cos A - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin A, cos A

योग

उत्तर

ΔABC is right angled at B

AB = 24 cm, BC = 7 cm

Let ‘x’ be the hypotenuse,

By applying Pythagoras

AC2 = AB2 + BC2

x2 = 242 + 72

x2 = 576 + 49

x2 = 625

x = 25

For Sin A, Cos A

At ∠A, opposite side = 7

adjacent side = 24

hypotenuse = 25

sin A = `"opposite side"/"hypotenuse" =("BC")/("AC") =  7/25`

cos A = `"adjacent side"/"hypotenuse" = ("AB")/("AC") = 24/25`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.1 | Q 1.1 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.1 | Q 2 .1 | पृष्ठ २३

संबंधित प्रश्न

Given sec θ = `13/12`, calculate all other trigonometric ratios.


State whether the following are true or false. Justify your answer.

The value of tan A is always less than 1.


State whether the following are true or false. Justify your answer.

sin θ = `4/3`, for some angle θ.


If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`


If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`


If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`


If `tan theta = 1/sqrt7`     `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`


Evaluate the following

cos2 30° + cos2 45° + cos2 60° + cos2 90°


Evaluate the following

`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`


Evaluate the Following

(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)


Find the value of x in each of the following :

cos x = cos 60º cos 30º + sin 60º sin 30º


The value of sin² 30° – cos² 30° is ______.


If cos (40° + A) = sin 30°, then value of A is ______.


`(sin theta)/(1 + cos theta)` is ______.


If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.


A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


Find will be the value of cos 90° + sin 90°.


If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×