Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
рдЙрддреНрддрд░
`tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
`tan theta = "ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ"`
Let ‘x’ be the hypotenuse
By applying Pythagoras
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
`x^2 = 1^2 + (sqrt7)^2`
ЁЭСе2 = 1 + 7 = 8
`x = 2sqrt2`
`cosec theta = (AC)/(AB) = 2sqrt2`
`sec theta = (AC)/(BC) = (2sqrt2)/sqrt7`
Substitute, cosec θ, sec θ in equation
`=> ((2sqrt2)^2 - (2 sqrt(2/7))^2)/((2sqrt2)^2 + ((2sqrt2)/sqrt7)^2)`
`(8 - 4 xx 2/7)/(8 + 4 xx 2/7)`
`=> (8 - 8/7)/(8 + 8/7)`
`=> ((56 - 8)/7)/((56 + 8)/7)`
`=48/64`
`= 3/4`
L.H.S = R.H.S
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
The value of sin² 30° – cos² 30° is ______.
If cos A = `4/5`, then the value of tan A is ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
(3 sin2 30° – 4 cos2 60°) is equal to ______.