Advertisements
Advertisements
Question
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
Solution
`tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
`tan theta = "๐๐๐๐๐ ๐๐ก๐ ๐ ๐๐๐"/"๐๐๐๐๐๐๐๐ก ๐ ๐๐๐"`
Let ‘x’ be the hypotenuse
By applying Pythagoras
๐ด๐ถ2 = ๐ด๐ต2 + ๐ต๐ถ2
`x^2 = 1^2 + (sqrt7)^2`
๐ฅ2 = 1 + 7 = 8
`x = 2sqrt2`
`cosec theta = (AC)/(AB) = 2sqrt2`
`sec theta = (AC)/(BC) = (2sqrt2)/sqrt7`
Substitute, cosec θ, sec θ in equation
`=> ((2sqrt2)^2 - (2 sqrt(2/7))^2)/((2sqrt2)^2 + ((2sqrt2)/sqrt7)^2)`
`(8 - 4 xx 2/7)/(8 + 4 xx 2/7)`
`=> (8 - 8/7)/(8 + 8/7)`
`=> ((56 - 8)/7)/((56 + 8)/7)`
`=48/64`
`= 3/4`
L.H.S = R.H.S
APPEARS IN
RELATED QUESTIONS
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Find the value of sin 45° + cos 45° + tan 45°.