Advertisements
Advertisements
Question
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Solution
Let OQ = x and OA = y
Given that, BQ = q, SA = P and AB = SQ = Length of ladder
Also, ∠BAO = α and ∠QSO = β
Now, In ΔBAO,
cos α = `"OA"/"AB"`
⇒ cos α = `y/"AB"`
⇒ y = AB cos α = OA ...(i)
And sin α = `"OB"/"AB"`
⇒ OB = BA sin α ...(ii)
Now, In ΔQSO
cos β = `"OS"/"SQ"`
⇒ OS = SQ cos β = AB cos β ...[∵ AB = SQ] ...(iii)
And sin β = `"OQ"/"SQ"`
⇒ OQ = SQ sin β = AB sin β ...[∵ AB = SQ] ...(iv)
Now, SA = OS – AO
P = AB cos β – AB cos α
⇒ P = AB(cos β – cos α) ...(v)
And BQ = BO – QO
⇒ q = BA sin α – AB sin β
⇒ q = AB(sin α – sin β) ...(vi)
Equation (v) divided by Equation (vii), we get
`"p"/"q" = ("AB"(cos β - cos α))/("AB"(sin α - sin β)) = (cos β - cos α)/(sin α - sin β)`
⇒ `"p"/"q" = (cos β - cos α)/(sin α - sin β)`
Hence proved.
APPEARS IN
RELATED QUESTIONS
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.