Advertisements
Advertisements
Question
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
Options
True
False
Solution
This statement is False.
Explanation:
Abbreviation used for cosecant of angle A is cosec A. And cos A is the abbreviation used for cosine of angle A.
Hence, the given statement is false.
APPEARS IN
RELATED QUESTIONS
If sin A = `3/4`, calculate cos A and tan A.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
If `sqrt2 sin (60° – α) = 1` then α is ______.
The value of sin² 30° – cos² 30° is ______.
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
What will be the value of sin 45° + `1/sqrt(2)`?
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.
(3 sin2 30° – 4 cos2 60°) is equal to ______.