Advertisements
Advertisements
Question
What will be the value of sin 45° + `1/sqrt(2)`?
Options
`1 + sqrt(2)`
`2sqrt(2)`
`1/sqrt(2)`
`sqrt(2)`
Solution
`sqrt(2)`
Explanation:
sin 45° + `1/sqrt(2) = 1/sqrt(2) + 1/sqrt(2)` .....`[∵ sin^circ = 1/sqrt(2)]`
= `(1 + 1)/sqrt(2)`
= `2/sqrt(2)`
= `2/sqrt(2) xx sqrt(2)/sqrt(2)`
= `(2sqrt(2))/2`
= `sqrt(2)`
Thus, the value of sin 45° + `1/sqrt(2)` is `sqrt(2)`.
APPEARS IN
RELATED QUESTIONS
In Given Figure, find tan P – cot R.
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
The value of sin² 30° – cos² 30° is ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.